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Abstract

Zika virus (ZIKV) and chikungunya virus (CHIKV) were recently introduced into the Ameri-

cas resulting in significant disease burdens. Understanding their spatial and temporal

dynamics at the subnational level is key to informing surveillance and preparedness for

future epidemics. We analyzed anonymized line list data on approximately 105,000 Zika

virus disease and 412,000 chikungunya fever suspected and laboratory-confirmed cases

during the 2014–2017 epidemics. We first determined the week of invasion in each city. Out

of 1,122, 288 cities met criteria for epidemic invasion by ZIKV and 338 cities by CHIKV. We

analyzed risk factors for invasion using linear and logistic regression models. We also esti-

mated that the geographic origin of both epidemics was located in Barranquilla, north

Colombia. We assessed the spatial and temporal invasion dynamics of both viruses to ana-

lyze transmission between cities using a suite of (i) gravity models, (ii) Stouffer’s rank mod-

els, and (iii) radiation models with two types of distance metrics, geographic distance and

travel time between cities. Invasion risk was best captured by a gravity model when account-

ing for geographic distance and intermediate levels of density dependence; Stouffer’s rank

model with geographic distance performed similarly well. Although a few long-distance inva-

sion events occurred at the beginning of the epidemics, an estimated distance power of 1.7

(95% CrI: 1.5–2.0) from the gravity models suggests that spatial spread was primarily driven

by short-distance transmission. Similarities between the epidemics were highlighted by

jointly fitted models, which were preferred over individual models when the transmission

intensity was allowed to vary across arboviruses. However, ZIKV spread considerably faster

than CHIKV.

Author summary

Understanding the spread of infectious diseases across space and time is critical for pre-

paredness, designing interventions, and elucidating mechanisms underlying transmission.
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We analyzed human case data from over 500,000 reported cases to investigate the spread

of the recent Zika virus (ZIKV) and chikungunya virus (CHIKV) epidemics in Colombia.

Both viruses were introduced into northern Colombia. We found that gravity models and

Stouffer’s rank models best described transmission and that transmission mainly occurred

over short distances. Our results highlight similarities and key differences between the

ZIKV and CHIKV epidemics in Colombia, which can be used to anticipate future epi-

demic waves and prioritize cities for active surveillance and targeted interventions.

Introduction

The global burden of disease due to arboviral infections is substantial and continues to increase

[1]. Chikungunya virus (CHIKV) is an alphavirus that is transmitted to people primarily by

Aedes mosquitoes [2]. Symptoms of chikungunya fever, the disease caused by CHIKV, include

fever, rash, and headache as well as intense joint pain, which can persist for weeks or months

[3]. Cases of chikungunya fever were first reported in the Americas in December 2013 [3].

Within a year, over one million cases were reported in the region, including severe cases and

deaths [4]. Zika virus (ZIKV) is a flavivirus that is also spread by Aedes mosquitoes. Symptoms

of ZIKV disease resemble those of chikungunya fever but are typically milder [5]. In May

2015, Brazil became the first country in the Americas to detect cases of ZIKV disease. In Octo-

ber 2015, Brazil reported an association between ZIKV infection during pregnancy and micro-

cephaly, a birth defect characterized by head size that is smaller than expected based on age

and sex. By February 2016, the World Health Organization declared the cluster of microceph-

aly and other neurological complications reported in Brazil a Public Health Emergency of

International Concern [6]. From Brazil, ZIKV spread widely throughout Latin America and

the Caribbean. There are currently no approved drugs to treat or prevent ZIKV disease or chi-

kungunya fever, although several vaccine candidates are under investigation [7,8].

Previously, the spatial and temporal spread of ZIKV [9–11] and CHIKV [12–14] in the

Americas has been studied separately. However, the viruses share common vectors and were

both introduced into apparently immunologically naïve populations. An integrated study of

these diseases in the same country may help elucidate similarities and differences between the

two. Here, a suite of spatial interaction models, including variations of the gravity model,

Stouffer’s rank model, and radiation model, were fitted to analyze transmission between cities

in Colombia, one of the countries most affected by the ZIKV and CHIKV epidemics in the

Americas [15,16]. There is a high risk of major infectious diseases in Colombia, including bac-

terial diarrhea from food or water as well as vector-borne diseases [17]. Each year, the country

is faced with dengue virus epidemics caused by one or more of the four known viral serotypes.

Like ZIKV, dengue virus is a flavivirus spread by Aedes mosquitoes; it is the causative agent of

dengue fever. Malaria transmission is also recorded annually in Colombia, with epidemic

cycles of two to seven years [18]. In this study, the invasion dynamics of CHIKV and ZIKV

were examined as well as the extent to which inter-city transmission depended on distance,

population sizes of invaded and susceptible cities, and the infectivity of each virus.

Results

Temporal and spatial patterns in invasion weeks

Out of 1,122 cities in Colombia, week of invasion was determined for 338 cities for CHIKV

and 288 cities for ZIKV. Invasion weeks ranged from the week ending May 31, 2014 to that

PLOS COMPUTATIONAL BIOLOGY Spatial and temporal invasion dynamics of Zika and chikungunya epidemics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009174 July 2, 2021 2 / 25

GitHub (http://github.com/kcharniga/zika_chik_

invasion).

Funding: KC, ZMC, PN, and CAD acknowledge

funding from the MRC Centre for Global Infectious

Disease Analysis (reference MR/R015600/1),

jointly funded by the UK Medical Research Council

(MRC, https://mrc.ukri.org) and the UK Foreign,

Commonwealth & Development Office (FCDO,

https://bit.ly/3gw2uER), under the MRC/FCDO

Concordat agreement and is also part of the

EDCTP2 programme supported by the European

Union. KC is funded by Imperial College London’s

President’s PhD Scholarship (https://bit.ly/

3iMiXX1). ZMC is supported by a Fellowship

through the Rutherford Fund (MR/R024855/1,

https://bit.ly/3q7Bi2n). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009174
http://github.com/kcharniga/zika_chik_invasion
http://github.com/kcharniga/zika_chik_invasion
https://mrc.ukri.org
https://bit.ly/3gw2uER
https://bit.ly/3iMiXX1
https://bit.ly/3iMiXX1
https://bit.ly/3q7Bi2n


ending September 19, 2015 for CHIKV and from the week ending August 8, 2015 to that end-

ing March 26, 2016 for ZIKV. The time for the diseases to invade 50% of cities ever affected

was shorter for ZIKV compared to CHIKV (Table 1), and while invasion weeks for ZIKV

tended to cluster within five months (from September 2015 to January 2016), 90% of invasion

weeks for CHIKV clustered within nine months (between September 2014 and May 2015). For

cities that experienced epidemics of both CHIKV and ZIKV (n = 205), invasion weeks were

significantly positively correlated (Pearson’s correlation coefficient 0.45, p< 0.0001). Both epi-

demics were first recorded in northern Colombia and spread from there. Early foci of disease

were also present in the central parts of the country (Fig 1).

Geographic origin of epidemics

The first city to report cases of chikungunya fever in Colombia was Planeta Rica, Córdoba.

Cases of ZIKV disease were first reported in the country simultaneously by five cities: (i) Cali,

Valle del Cauca, (ii) San Andrés, San Andrés and Providencia, (iii) Cúcuta, Norte de Santan-

der, (iv) El Zulia, Norte de Santander, and (v) Puerto Santander, Norte de Santander. Assum-

ing a linear relationship between invasion week and geographic distance from the source of

the epidemic, the estimated origin of both epidemics was Barranquilla, Colombia’s fourth

most populated city located on the Caribbean coast (Fig 2). According to the line list data, Bar-

ranquilla was among the first five cities to report cases of chikungunya fever, first reporting

cases in week 12 (invaded in week 11). The city was also among the first 18 cities to report

cases of ZIKV disease, first reporting cases in week 5 (invaded in week 4).

Fig 3 shows the spread of reported cases during the epidemics. Epidemiological curves by

department can be found in S1 Text. Most departments had some overlap in reported chikun-

gunya fever cases and ZIKV disease cases. Although none of the departments had a peak in the

incidence of both diseases at the same time, only eight weeks separated the peaks of the

CHIKV and ZIKV epidemics in Putumayo. S1 and S2 Movies show the monthly incidence per

100,000 population by first administrative unit (department).

Long-distance transmission events

Four long-distance transmission events were identified for CHIKV and three were identified

for ZIKV. For CHIKV, the affected cities were (i) Girardot, Cundinamarca, (ii) La Primavera,

Vichada, (iii) Mocoa, Putumayo, and (iv) Puerto Ası́s, Putumayo. For ZIKV, the affected cities

were (i) Barranquilla, Atlántico, (ii) Tauramena, Casanare, and (iii) Cartagena, Bolı́var. Three

of these seven cities are department capitals. All of these events occurred early in the epidem-

ics, within the first 15% of cities invaded (Methods and S1 Text). Long-distance transmission

events for CHIKV occurred at distances of 366, 402, 431, and 475 km compared to a mean dis-

tance of 25.7 km. Long-distance transmission events for ZIKV occurred at distances of 322,

Table 1. Epidemiological characteristics of CHIKV and ZIKV epidemics in Colombia.

Cities (#) Time for spread to 50%�

(weeks)

Time for spread to 100%��

(weeks)

Calendar time for 90% of

spread���
Long-distance transmission events����

(#)

CHIKV 338 31 68 Sept. 2014-May 2015 (35 weeks) 4

ZIKV 288 16 33 Sept. 2015- Jan. 2016 (21 weeks) 3

�Time for 50% of cities to be invaded.

��Time from the first city to be invaded to the last city to be invaded.

���Calendar time for 90% of cities to be invaded (5th percentile to 95th percentile).

����More than 344.4 km for CHIKV and more than 321.21 km for ZIKV. See Methods and S1 Text.

https://doi.org/10.1371/journal.pcbi.1009174.t001
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336, and 346 km compared to a mean distance of 25.6 km. Potential sources of the affected cit-

ies can be found in S1 Text.

It is important to note that the methods for estimating the epidemic origin and long-dis-

tance transmission events are independent of one another. In the case of ZIKV, for example,

Barranquilla is estimated as both the epidemic origin and a long-distance transmission event.

Spatial interaction models

Models fitted independently to each virus. Models were initially fitted to cities that had

available data on both distance metrics (337 and 287 cities for CHIKV and ZIKV, respectively).

The best-fitting CHIKV model was Stouffer’s rank model with geographic distance (S1 Text).

The next best-fitting models were Stouffer’s rank model and a version of the gravity model

that incorporates spatial interaction (also known as Fotheringham’s competing destinations

model [19]), both fitted to travel time between cities. The change in Deviance Information Cri-

terion (DIC) among the first three models was not meaningful (�4). The fourth best-fitting

model was a gravity model (competing destinations version) incorporating geographic dis-

tance, with a change in DIC of 6.5 compared to the best-fitting model. Although some models

Fig 1. Geographic patterns of invasion weeks in studied cities in Colombia based on first reported cases. Invasion weeks are shown by 12-week

period for (A) CHIKV and 6-week period for (B) ZIKV. Each circle represents a city, and the size of the circle is proportional to population size.

Each panel shows only cities newly invaded during the time period indicated in the upper left-hand-corner. The island of San Andrés is not shown

but was invaded by CHIKV in week 21 and by ZIKV in week 0. Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.

https://doi.org/10.1371/journal.pcbi.1009174.g001

Fig 2. Correlations between city invasion weeks and geographic distance from first invaded cities for CHIKV and ZIKV. Week of invasion for each

invaded city is shown on the y-axis for both plots. These weeks are plotted against (A) the geographic distance from the most likely origin of CHIKV in

Colombia, Barranquilla and (B) the geographic distance from the most likely origin of ZIKV in Colombia, also Barranquilla. Pearson’s correlation

coefficients and significance are shown above each plot.

https://doi.org/10.1371/journal.pcbi.1009174.g002
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fitted to travel time between cities had lower DIC values than the same model type fitted to

geographic distance, the difference was only meaningful for the radiation variant model. The

radiation and radiation variant models performed the least well.

In contrast to CHIKV, the best-fitting model for ZIKV was the competing destinations version

of the gravity model with geographic distance (S1 Text). This model was followed by Stouffer’s

rank model and Stouffer’s rank variant model, both incorporating geographic distance. Within

model types, ZIKV models fitted to geographic distance were preferred over those fitted to travel

time between cities. As with CHIKV, the models that performed least well were the radiation and

radiation variant models. Other versions of the gravity models can be found in S1 Text.

For both epidemics, the best-fitting gravity model (based on the lowest DIC) included the fol-

lowing parameters: a distance power, power for invaded city population size, density dependence,

infectivity, and transmission intensity. In both instances, the population size of the susceptible city

appeared uncorrelated with the invasion dynamics. The estimated distance power, γ, for each

model was 1.68 (95% credible interval [CrI]: 1.44–1.90) for CHIKV and 1.74 (95% CrI: 1.51–1.96)

for ZIKV. Thus, we cannot exclude the possibility that the relationship with distance was the same

for both viruses. Both models also estimated intermediate levels of density dependence.

In contrast, invasion risk was associated with the population size of the susceptible city in both

Stouffer’s rank models. Estimates of the infectivity parameter were similar to those obtained from

the gravity models. Although the estimates of transmission intensity were lower in the Stouffer’s

rank models, ZIKV still had a higher estimate compared to CHIKV. Estimates of the effect of

invaded city population size were stronger; however, because this parameter additionally captures

spatial interaction, the interpretation is different compared to the gravity models.

Models fitted jointly to arboviruses. The four model variants selected for the joint analy-

sis included the gravity model and Stouffer’s rank model, each with either geographic distance

or travel time between cities. The individual and joint models for the two best-fitting model

variants are shown in Table 2 (gravity model with geographic distance and Stouffer’s rank

model with geographic distance); the difference in the individual models’ sum of DIC was only

2.4. The third and fourth best-fitting individual and joint models are shown in S1 Text. We

found that for each model variant considered, the joint model which assumed the same param-

eters across arboviruses had a higher DIC (i.e. worse fit) than the sum of the individual models’

DIC. The fit of the joint models improved when the parameter for transmission intensity was

allowed to vary across arboviruses. When both transmission intensity and infectivity parame-

ters were allowed to vary across arboviruses, the DIC values of the joint models were only 1–2

units away from the individual models’ summed DIC. Overall, the most parsimonious model

with the lowest DIC was the joint gravity model with geographic distance and two parameters

for transmission intensity (Table 2).

Validation of gravity model fit and parameter fitting procedure

Model validation was performed for each individual virus’ best-fitting gravity model with geo-

graphic distance. As geographic distance data were available for all cities, we used models fitted

to 338 and 288 cities for CHIKV and ZIKV, respectively. The parameter values for these mod-

els can be found in S1 Text. For each city, we evaluated the predicted invasion week given the

observed invasion weeks in other cities up to that time. The best-fitting models predicted the

Fig 3. Heatmaps showing the spatial and temporal spread of CHIKV and ZIKV in Colombia. Population-weighted centroids were

used to rank departments in order from North to South. Colors across rows represent the number of cases of (A) chikungunya fever

and (B) ZIKV disease for each department. Weeks are plotted on the x-axis starting from the first week cases were reported to the last

week cases were reported. Dates for (A) range from the week ending June 7, 2014 to that ending July 9, 2016, and dates for (B) range

from the week ending August 15, 2015 to that ending June 17, 2017. White rectangles are weeks with zero reported cases.

https://doi.org/10.1371/journal.pcbi.1009174.g003
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distribution of the local start of epidemics well (Fig 4). Excluding cities that were invaded in

week 0, for CHIKV 304 out of 337 cities (90% of cities, 95% CI: 87–93%) lie within the 95%

interval of their expected distribution, and for ZIKV 268 out of 283 cities (95% of cities, 95%

CI: 91–97%) lie within the 95% interval of their expected distribution. Cities that fell outside of

these intervals tended to be invaded at the beginning or the end of the epidemics (S1 Text).

The best-fitting ZIKV model captured the shape of the observed invasion week distribution

well. In contrast, the best-fitting CHIKV model did not capture the shape well at the end of the

epidemic. Cities invaded late in the CHIKV epidemic (week 53 or later) had smaller popula-

tion sizes and fewer cases compared to cities invaded earlier (up to week 52) (Wilcoxon rank-

sum tests for population size: W = 885, p = 0.004 and for cumulative case numbers: W = 900,

p = 0.005). However, these 11 late-invaded cities represent a small proportion of all invaded

cities (3%).

Simulated epidemics from the best-fitting model for each virus were consistent with the

observed epidemic in terms of the number of invaded cities over time (Fig 5). For CHIKV, we

Table 2. Comparison of individual versus joint models of CHIKV and ZIKV spread in Colombia.

Model

type�
Distance

type��
DIC Sum of

DIC

γ (distance

power)

μ (susceptible

population)���
ν (invaded

population)

ε (spatial

interaction)

ϕa

(infectivity)

ϕb

(infectivity)

βa

(intensity)

βb

(intensity)

CHIKV G GD 2329.4 4044.9 1.68

(1.44–

1.90)

0 0.65 (0.53–

0.76)

0.83 (0.68–

0.99)

0.35 (0.25–

0.46)

0.24 (0.14–

0.39)

ZIKV G GD 1715.5 1.74

(1.50–

1.97)

0 0.55 (0.41–

0.69)

0.67 (0.50–

0.83)

0.27 (0.13–

0.40)

1.11 (0.68–

1.81)

Joint G GD 4129.0 1.69

(1.54–

1.84)

0 0.55 (0.47–

0.64)

0.81 (0.71–

0.92)

0.12 (0.07–

0.16)

0.52 (0.39–

0.70)

Joint G GD 4042.6 1.72

(1.56–

1.89)

0 0.61 (0.52–

0.70)

0.76 (0.65–

0.87)

0.32 (0.24–

0.40)

0.31 (0.21–

0.46)

0.90 (0.65–

1.28)

Joint G GD 4043.3 1.71

(1.56–

1.87)

0 0.60 (0.51–

0.69)

0.76 (0.65–

0.86)

0.35 (0.25–

0.45)

0.27 (0.14–

0.40)

0.28 (0.18–

0.44)

0.91 (0.66–

1.24)

CHIKV S GD 2322.9 4047.3 0.48 (0.37–0.58) 1.18 (1.01–

1.36)

0.32 (0.24–

0.42)

0.009

(0.005–

0.015)

ZIKV S GD 1724.4 0.43 (0.31–0.55) 1.37 (1.12–

1.63)

0.53 (0.44–

0.63)

0.021

(0.013–

0.032)

Joint S GD 4143.5 0.43 (0.36–0.51) 1.31 (1.15–

1.46)

0.21 (0.17–

0.25)

0.022

(0.016–

0.028)

Joint S GD 4055.5 0.44 (0.36–0.51) 1.18 (1.03–

1.33)

0.41 (0.34–

0.49)

0.006

(0.004–

0.010)

0.020

(0.014–

0.028)

Joint S GD 4046.3 0.45 (0.38–0.53) 1.25 (1.09–

1.40)

0.31 (0.23–

0.40)

0.54 (0.44–

0.63)

0.011

(0.006–

0.017)

0.017

(0.012–

0.024)

Posterior median and 95% credible interval presented for each parameter. Models were fitted to 337 cities for CHIKV and 287 cities for ZIKV. For the joint models that

estimate different parameters across arboviruses, parameters with subscript a refer to CHIKV, while parameters with subscript b refer to ZIKV.

�G: gravity (competing destinations), S: Stouffer’s rank

��GD: geographic distance

���When μ is set to 0, this means that cities with large populations have the same risk of being invaded as cities with small populations.

https://doi.org/10.1371/journal.pcbi.1009174.t002
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Fig 4. Probability distribution of invasion weeks. The panels show the estimated probability distributions of invasion

week for each city (colored lines) for (A) CHIKV and (B) ZIKV based on the observed start of invasion in other cities

up to that time. The calculations were performed using the median parameter estimates from the posterior

distributions of the best-fitting models for CHIKV and ZIKV. The black lines show the observed invasion week based

on the first reported cases in each city. Values plotted as 0.01 represent probabilities of 0.01 or less.

https://doi.org/10.1371/journal.pcbi.1009174.g004

Fig 5. Epidemic invasion simulations. Simulated invasion week (as week of first reported cases) for (A) CHIKV and (B) ZIKV from the

best-fitting models. Simulated epidemics are shown in light gray. The dark gray lines are the average across the 1,000 simulations. The red

lines show the observed number of cities that first reported cases in each week.

https://doi.org/10.1371/journal.pcbi.1009174.g005
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observed half of the cities invaded by week 31 of the epidemic, while 1,000 simulations pre-

dicted half of the cities invaded by week 34.4 on average (min. 17, mode 27, max. 66). For

ZIKV, we observed half of the cities invaded by week 16, while simulations predicted 15.7 on

average (min. 11, mode 15, max. 23). Epidemic simulations showed that model fits were robust

to the choice of threshold for invasion (S1 Text).

For each virus, we were able to recover the fitted parameter estimates from a model fitted to

a single simulated dataset created by simulating the epidemic from the median parameter esti-

mates. The results of the simulation study can be found in S1 Text.

Results of models fitted to all 1,122 cities in Colombia are presented in S1 Text. When all

cities were included, as expected the transmission intensity estimate was much lower, and the

epidemic simulations showed a very delayed and prolonged epidemic compared to the

observed incidence of invaded cities.

We relaxed the single-introduction assumption for CHIKV to test the effect on parameter

estimates following Eggo et al. [20]. By starting parameter estimation from week 12, we

allowed five cities to seed the epidemic rather than one. The parameter estimate of the distance

kernel was slightly higher, but the credible intervals largely overlapped, suggesting that this

assumption does not greatly affect the model fit (S1 Text).

Validation of Stouffer’s rank model fit

We also performed epidemic simulations for the best-fitting Stouffer’s rank models. Even

though this model had a lower DIC than the best-fitting gravity model for CHIKV, the epi-

demic simulations were worse overall (S1 Text). In contrast, simulations for ZIKV were com-

parable across model types.

Risk factors of invasion

For CHIKV, the following predictors of city invasion were significant at the 0.05 level in the

univariate analysis: population size, elevation, mean temperature during the study period,

mean temperature up to the epidemic peak, mean rainfall over the study period, mean rainfall

up to the epidemic peak, percentage of households with overcrowding, percentage of house-

holds with inadequate exterior walls, and risk of dengue virus. Except for mean rainfall up to

the epidemic peak, the other eight predictors were also significantly associated with invasion

by ZIKV. In addition, the percentage of households with inadequate floors was almost signifi-

cant (p = 0.06) (S1 Text).

Four variables were included in the best-fitting logistic regression model for CHIKV inva-

sion: mean temperature during the study period, mean rainfall during the study period, den-

gue risk, and mean travel time. Both higher rainfall and longer travel time were protective for

invasion. In contrast, temperature and dengue risk were associated with increased odds of

invasion. The odds of invasion by CHIKV were 15.5 (95% CI: 7.39–34.84) times higher among

cities in the third tertile of dengue risk compared to cities with no risk of dengue adjusting for

other variables in the model. In the model where weather covariates were defined up to the epi-

demic peak rather than during the study period, the odds ratio for temperature was about the

same (1.25), while the odds ratio for rainfall decreased slightly to 0.86. Four variables were also

included in the best-fitting logistic regression model for ZIKV invasion: elevation, mean rain-

fall during the study period, and inadequate exterior walls were all protective for invasion,

while dengue risk was associated with an increase in the odds of ZIKV invasion. The odds of

invasion were 42.3 (95% CI: 16.0–135.4) times higher among cities in the third tertile of den-

gue risk compared to cities with no risk of dengue adjusting for other variables in the model

(S1 Text). In the model where weather covariates were defined up to the epidemic peak, the
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odds ratio for rainfall increased slightly to 0.84. There was no evidence of poor fit for either

model according to the Hosmer and Lemeshow goodness-of-fit test (CHIKV: p = 0.56, ZIKV:

p = 0.40).

Using linear regression models, we found that the time to invasion decreased by 3.4 (95%

CI: 2.1–4.8) weeks for CHIKV and by 2.3 (95% CI: 1.3–3.4) weeks for ZIKV on average for

each one-unit difference in dengue risk level (S1 Text).

Discussion

Similarities and key differences in the space-time dynamics of the CHIKV and ZIKV epidem-

ics in Colombia were identified using spatial interaction models. Spatial invasion of both epi-

demics likely began in the north (Caribbean region). From there, the Andes Mountains may

have delayed epidemic spread southwards by serving as a natural barrier to human movement.

The best-fitting models for each virus were different, and the ZIKV epidemic spread twice as

fast as the CHIKV epidemic. Our gravity model parameter estimates for γ, ν, ε, and ϕ, charac-

terizing the effects of distance, invaded city population size, density dependence, and infectiv-

ity, respectively, were consistent with those obtained in studies of seasonal and pandemic

influenza spread [20,21]. Similarly, our parameter estimates for the effect of susceptible city

population size, μ, and the effect of population sizes of invaded and intervening cities, ν,

obtained from Stouffer’s rank models were consistent with those obtained in a study of measles

[22]. Cities with high historical dengue virus transmission had greater odds of being invaded

compared to cities with no risk of dengue, and higher levels of dengue risk were associated

with decreased time to invasion.

Comparing alternative spatial interaction models

Across model types, geographic distance was the preferred distance metric to describe spread

of ZIKV; in contrast, geographic distance described spread similarly to travel time between cit-

ies for CHIKV. Although Viboud et al. found that work commutes better described the spread

of seasonal influenza in the US compared to geographic distance, Charu et al. found that mod-

els with geographic distance outperformed those using work commutes or air traffic [21,23].

Geographic distance was also a better predictor of CHIKV spread in the Caribbean region

than air traffic [12].

Unlike the gravity model, Stouffer’s rank model does not have a parameter for the effect of

distance on disease spread. Rather, the ν parameter indirectly captures distance by accounting

for the population sizes of cities located in between invaded and susceptible cities as well as the

population size of the invaded city. Using Stouffer’s rank models, we obtained similar esti-

mates of μ for CHIKV and ZIKV (0.48 [95% CrI: 0.37–0.58] and 0.43 [95% CrI: 0.32–0.55],

respectively). The credible intervals for ν also overlapped (CHIKV: 1.19 [95% CrI: 1.01–1.36],

ZIKV: 1.37 [95% CrI: 1.15–1.65]). While our estimates for ν are similar to those reported by

Bjørnstad et al. in their investigation of measles in England and Wales from 1944–1965, our

estimates of μ were lower; they reported 1.44 for ν and 0.82 for μ. They also found that Stouf-

fer’s rank model performed the best, followed by an extended version of the radiation model

and the competing destinations model. They recommended that more than one class of mod-

els should be explored when attempting to predict the spatial spread of infectious diseases [22].

Kraemer et al. found that when used together, gravity and radiation models helped explain het-

erogeneity in the invasion process of Ebola virus in West Africa during the 2014–2016 epi-

demic [24].

Epidemic simulations of Stouffer’s rank models were unable to reproduce the CHIKV epi-

demic, despite this model having a lower DIC than the best-fitting gravity model. Although
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Stouffer’s rank model was better able to capture the beginning of the epidemic, the gravity

model performed better in the middle and at the end of the epidemic. A possible reason for

this finding is that radiation-type models tend to capture commuting patterns, while gravity

models are better suited toward longer-distance movements [24].

Gravity models

The estimated power of the effect of distance on spread, γ, with geographic distance was about

1.7, indicating that transmission was dominated by short-distance interactions. Slightly higher

estimates of about 2.0 were obtained for models using travel time between cities (S1 Text). We

expected similar estimates of γ for CHIKV and ZIKV because they were spread by the same

vectors in the same geographic area. Using geolocated genotype and serotype data, Salje et al.

found evidence that in Bangkok, Thailand, transmission of dengue virus is highly focal, with

the majority of infection events occurring near the home [25].

A range of estimates of γ have been reported in the literature. Gog et al. reported 2.6 (95%

CI: 2.3–2.8) for 2009 pandemic influenza in the US, and Charu et al. reported a median of 2.2

(range 2.1–2.7 with standard deviations between 0.13 and 0.33) across seven influenza seasons

in the US [21,26]. However, Eggo et al. reported lower values of 1.2 and 0.86 for 1918 pan-

demic influenza in England and Wales and in the US, respectively [20]. Differences could be

attributed, at least in part, to data being aggregated at different spatial scales; fewer data points

in an area will lead to lower estimates of the distance power because locations are farther apart.

For the best-fitting CHIKV and ZIKV models, we obtained similar estimates for the esti-

mated power for the effect of invaded city population size ν, indicating that cities with large

populations are more likely to spread disease than cities with smaller populations. Gog et al.

did not include this parameter, and in Eggo et al., it was not selected in their best-fitting

England and Wales model.

For both CHIKV and ZIKV, we accepted the null hypotheses that the estimated powers (μ)

for the effects of susceptible city population size were 0. This means that cities with large popu-

lations have the same risk of being invaded as cities with small populations. However, μ did

appear to contribute to the fit of the Stouffer’s rank models, and therefore we cannot say defin-

itively that susceptible city population size was unimportant in the spread of CHIKV and

ZIKV. Low, but significant, estimates of μ were reported by Gog et al. (0.27, 95% CI: 0.11–

0.44) and Eggo et al. (0.40, 95% CrI: 0.25–0.54) for seasonal and pandemic influenza,

respectively.

Intermediate levels of density dependence best described transmission (ε for CHIKV 0.83,

95% CrI: 0.69–0.98 and ZIKV 0.68, 95% CrI: 0.50–0.84) (S1 Text). In other words, connectivity

somewhat depended on the number and size of neighboring populations. For influenza in the

US, Gog et al. and Charu et al. reported estimates of ε close to 1 [21,26]. Eggo et al. reported ε
close to 1 for influenza in England and Wales but also found that a density-dependent model

(ε = 0) fit the data best for influenza in the US [20]. Similarly, Salje et al. found that dengue

virus transmission in Bangkok, Thailand was consistent with density-dependent transmission

(ε = 0) [25]. Differences in estimates could be due to differences in both coverage of datasets

and spatial scales considered.

We obtained low estimates for the infectivity parameter ϕ for both CHIKV (0.35, 95% CrI:

0.25–0.48) and ZIKV (0.27, 95% CrI: 0.13–0.40) models (S1 Text). This suggests that cities

with more reported cases were more infectious than cities with fewer reported cases. One rea-

son for low, though significant, estimates could be because reported case incidence poorly

reflects the true incidence of infection in a city. For example, if reporting rates vary over time

or by location, cases reported to the surveillance system may not be a good proxy for actual
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infection incidence. Using mortality rate as a proxy for infectiousness, Eggo et al. reported a

similar estimate of 0.24 (95% CrI: 0.03–0.47) for pandemic influenza in England and Wales

[20].

Transmission intensity clearly differs between the two viruses. The estimated β for ZIKV is

significantly higher than that for CHIKV, reflecting the faster spread of the ZIKV epidemic.

Differences in transmission intensity could be related to the 2015–2016 El Niño weather phe-

nomenon. Caminade et al. found that increased temperatures associated with El Niño created

conditions across South America that were favorable for ZIKV transmission in 2015 [27].

Joint models

Joint models of CHIKV and ZIKV were preferred over models fitted to each virus separately

when parameters for transmission intensity and infectivity were allowed to vary across viruses.

This finding suggests that some aspects of the spatiotemporal patterns of epidemic arboviruses

in Colombia were the same.

Conclusions and limitations

The results presented here depend on estimates of invasion week in each city. We defined inva-

sion week as the week before cases were first reported in each city. At the beginning of an out-

break, one or even a small number of reported cases in a city may not be sufficient to sustain

chains of transmission resulting in spread to other cities; however, the first reported cases could

be the indication of previously undetected transmission. A genomic epidemiological study

found evidence that ZIKV had been circulating undetected in Colombia for five to eight months

before the first cases were confirmed in September 2015 [28]. Moreover, because we modeled

the city of likely infection rather than city of notification or residence (S1 Text), it is possible

that cities with better surveillance or healthcare infrastructure could have been the first to report

cases in travelers returning from cities with no previous evidence of transmission.

Our results are robust to uncertainty in invasion weeks. We fitted the models using an alter-

native definition for invasion week (S1 Text). Although model fits for CHIKV were slightly

worse, ZIKV model fits were comparable. Reassuringly, parameter estimates were similar (S1

Text). Our results are also robust to the choice of threshold for the number of reported cases.

For each virus, gravity model simulations were similar for thresholds of 10, 20, and 30 cases,

and the credible intervals of all parameter estimates overlapped (S1 Text).

Cities that did not meet the thresholds for cumulative reported cases were treated as miss-

ing in the analysis. Similar approaches have been employed in the study of seasonal and pan-

demic influenza [20,21,26]. Here, some unaffected cities were not invaded because they were

not at risk (due to environmental factors). Of the cities that were at risk, some were invaded

but others appeared to have escaped invasion by chance or other unexamined factors. Among

cities that escaped invasion, there is also some probability that they had in fact been invaded

but never reported cases. Alternative study designs would be more appropriate for determin-

ing why some cities appeared to escape invasion. For example, a mechanistic model of disease

transmission accounting for environmental conditions such as temperature and rainfall could

be used to ascertain why some cities were invaded and others were not [11]. Also, community-

based studies conducted shortly after the epidemic could have assessed whether a city was

invaded but did not report cases. Community-based studies were conducted in Colombia fol-

lowing both epidemics, but only in cities that reported many cases [29–31].

Ninety-nine percent of chikungunya fever cases and 95% of ZIKV disease cases were clini-

cally confirmed, rather than laboratory confirmed. This could have led to misclassification, as

dengue virus, CHIKV, and ZIKV were circulating simultaneously. All three arboviruses cause
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similar symptoms which makes differential diagnoses based on clinical grounds alone a chal-

lenge in endemic settings [32]. Also, asymptomatic infection, mild illnesses, and limited access

to healthcare likely resulted in underreporting. Problems with reporting and misdiagnoses

may have affected the fit of the probability distribution of invasion week for cities invaded

near the end of the CHIKV epidemic (Fig 4). Some of these late-invaded cities might have

been invaded earlier but not reported cases to the surveillance system in a timely manner.

Another possible explanation is that cases reported at the end of the CHIKV epidemic were

actually misdiagnosed ZIKV disease cases. Oliviera et al. studied the interrelationships between

cases of dengue fever, chikungunya fever, and ZIKV disease in Brazil from 2015–2017. Con-

firmed cases included all suspected cases reported to the national surveillance system, while

discarded cases were defined as suspected cases that met at least one of the following condi-

tions: (i) negative laboratory diagnosis by IgM serology, (ii) laboratory confirmation of

another disease, and (iii) clinical and epidemiological compatibility with another disease.

Using an autoregressive model, they found that the time series of confirmed and discarded

cases of dengue fever significantly affected the time series of confirmed and discarded cases of

ZIKV disease and the other way around. Although confirmed and discarded cases of chikun-

gunya fever were found to affect the reporting of dengue fever, there was no evidence that the

reporting of ZIKV disease or dengue fever affected reporting of chikungunya fever [33].

Historical dengue transmission in Colombia could have played a role in the spread of

CHIKV and ZIKV. Although it is unlikely that high levels of dengue would have affected sus-

ceptibility to CHIKV, an unrelated alphavirus, there is some evidence of cross-reactivity

among flaviviruses, such as ZIKV and dengue virus. If pre-existing immunity for dengue virus

increased the risk of symptomatic ZIKV infection, we would expect faster recognition of ZIKV

in cities that are hyperendemic for dengue. A cohort study in Managua, Nicaragua found evi-

dence that prior dengue infection was protective for symptomatic ZIKV infection among chil-

dren (incidence rate ratio 0.62, 95% CI: 0.44–0.86) adjusting for age, sex, and recent infection

with dengue virus [34]. However, a cohort study in Salvador, Brazil found that individuals

with high antibody titers to dengue virus had less risk of ZIKV infection and symptoms [35].

We found that high historical levels of dengue in a city decreased the time to invasion for both

CHIKV and ZIKV, suggesting that other factors such as environmental suitability of Aedes
mosquitoes are more important to city invasion than potential impacts of cross-reactive

immunity among flaviviruses.

A further limitation is that the model only incorporates one distance metric at a time. In

reality, the spread of ZIKV and CHIKV was likely driven by a combination of air travel, land-

based travel, and vector movement. The model also does not consider changes over time in

reporting, human behavior, or transmission. These aspects could have changed during the epi-

demics, especially when the Public Health Emergency of International Concern was declared

by the World Health Organization in February 2016 [6].

Another assumption of this model is that CHIKV and ZIKV were each introduced into

Colombia only once. The results of two recent genomic studies suggest that this assumption is

valid which is why we did not find it necessary to account for background importation rates of

CHIKV and ZIKV. Black et al. found evidence of two separate introductions of ZIKV into

Colombia; however, the majority of cases were associated with a single introduction [28]. Simi-

larly, Villero-Wolf et al. found evidence of only three introductions of CHIKV in Colombia,

suggesting that most cases resulted from transmission within the country, rather than repeated

travel-related importations [36].

The gravity model formulation used in this study works well retrospectively; however, more

work is needed to understand why some cities appear to escape invasion. Until this issue is

resolved, these methods have limited use for real-time forecasting of epidemics.
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Future directions for this work include the use of this approach to understand the invasion

dynamics of other epidemics. Further research should also focus on quantifying the relative

contribution of human versus vector movement on spatial transmission. This would have

broad implications for surveillance and control for other mosquito-borne epidemics such as

dengue, Mayaro, and yellow fever.

Methods

Ethics statement

The technical and ethical endorsement of the study was provided by the Comité de Ética y de

Metodologı́as de Investigación of Colombia’s Instituto Nacional de Salud (project number 35–

2017). Consent was not obtained from study participants as the data were analyzed anonymously.

Data

We analyzed anonymized line list data on 105,152 ZIKV disease and 411,789 chikungunya

fever suspected and laboratory-confirmed cases reported to Sivigila, Colombia’s national pub-

lic health surveillance system, between 2014 and 2017. See S1 Text for a full description of epi-

demiological and demographic data as well as data on elevation, weather, socioeconomic

status, and a proxy of human mobility.

Definition of invasion week

Out of 1,122 cities in Colombia, only cities with at least 20 cases of chikungunya fever were

considered to have been “invaded” by CHIKV. Similarly, only cities with at least 30 cases of

ZIKV disease were considered to have been “invaded” by ZIKV. Cities with case counts below

these thresholds were not considered in the primary analysis. Invasion was defined as the week

before cases were first reported in each city. We assumed a latent period of one week after

which the city is considered infectious and can spread the infection to other cities. S1 Text

includes details of and model fits to an alternative definition of invasion week.

Potential sources of the epidemics

The cities in Colombia where the CHIKV and ZIKV epidemics most likely originated were

identified. The method is based on the idea that epidemics spread radially from the origin,

meaning that the relationship between invasion week and distance from the source is linear

[21]. Assuming a single introduction of each virus into Colombia, the first 10% of invaded cit-

ies were considered as potential origins for the epidemics. Pearson’s correlation coefficient for

the relationship between the city’s invasion week and its geographic distance to the origin was

calculated for each potential origin. The most likely source was identified as the city with the

highest such correlation coefficient (Fig 2). Reporting at the beginning of the epidemics would

have been unreliable because the diseases were new to the country, there were a high propor-

tion of asymptomatic infections, and the presentation of symptoms is fairly unspecific. There-

fore, the line list data alone are unlikely to be very useful for determining the geographic origin

of the epidemics.

Long-distance transmission events

The number and location of long-distance transmission events of CHIKV and ZIKV were

identified using the invasion week in each city. The method detects outliers in the distribution

of pairwise distances between newly invaded cities and the set of infectious cities at the previ-

ous time step [21]. C is defined as the set of cities in the network. At time tj, C is divided into
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the set of infectious cities Itj and the set of susceptible cities Stj:

Itj ¼ fk : tk < tjg

Stj ¼ fk : tk � tjg

where tj is the timing of invasion of city j and tk is the timing of infectiousness (invasion week

plus one week) in each of k cities. For city j, the minimum distance between city j and infec-

tious cities in Itj was calculated as dj, the most likely route of invasion when the spatial dynam-

ics are dominated by distance.

dj ¼
min

k
djk

for k 2 Itj. We also calculated Dj, the minimum distance between city j and any other city in

the network:

Dj ¼
min

i
dji

for i 2 C. If the process were entirely spatial, cities would usually be invaded by nearby cities.

Thus, the distance to the nearest city is approximated by dj−Dj� 0. For each city, dj−Dj was

calculated and those included in the 99th percentile of the distribution of dj−Dj were consid-

ered long-distance transmission events (S1 Text).

Spatial interaction models

We considered four main types of spatial interaction models, (i) the gravity model, (ii) the

competing destinations model, (iii) Stouffer’s rank model, and (iv) the radiation model. For

each model type, we considered both geographic distance and travel time between cities.

Model parameters were initially estimated independently for each virus. From the four

best-fitting models with a common structure, we then ran joint models assuming the same

parameters across CHIKV and ZIKV. We also considered joint models in which some param-

eters were allowed to vary across viruses. From the first approach, we obtained the best-fitting

model for each virus. From the second approach, we obtained the best-fitting joint model

highlighting the commonalities in the spatiotemporal dynamics across CHIKV and ZIKV.

Gravity models. We fitted gravity models to analyze transmission of CHIKV and ZIKV

between cities that reported the minimum number of cases. These models have been used to

study transmission of infectious diseases, such as measles [37], influenza [20,21,23,26], vector-

borne diseases [38], and cholera [39,40], among others.

For each ZIKV and CHIKV separately, N cities have an invasion week, ti, which was defined

as one week before cases were first reported in each city. Cities also have population size, Pi,
which is assumed to be constant over time and weekly case counts weighted by the generation

time distribution, ci,t (S1 Text). The generation time is the average time between the time of

infection in a primary case and the time of infection in a secondary case infected by the pri-

mary case [41]. The geographic distance in km (or travel time in minutes) between invaded

city i and susceptible city j is dij. For geographic distance, we used the geodesic distance on an

ellipsoid, which is the shortest path between two points accounting for the curvature of the

Earth. Further details are given in S1 Text.

At each time point, a city can be either “susceptible,” “latently invaded,” or “infectious.”

Once cities are invaded, they are latently invaded for one week and then infectious. After
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external seeding into Colombia occurs, we assumed no additional cases are imported from

abroad. If a city is invaded in week ti, only Colombian cities that were infectious in the previ-

ous week could have spread the disease to that city. We assumed transmission parameters

remain constant over time.

As in Eggo et al.[20], the force of infection, λ, represents the hazard of infection from an

invaded city to a susceptible city. At time t, the force of infection from city i to city j can be

defined as:

li!j;t ¼ bc
�

i;tP
m

j

Pui =d
g
ij

Sk;k6¼j
Puk
dgkj

� �ε

Exponents ν and μ are for population sizes of city i and j, respectively. The distance between

cities is dij and γ is the power parameter. β describes transmission intensity. ϕ captures the

relationship between infectivity of a city and its weekly case count weighted by the generation

time distribution. A value of ϕ = 1 indicates that the infectiousness of a city at time ti is propor-

tional to the number of cases reported in that city weighted by the generation time distribution

at time ti. When ϕ = 0, infectiousness does not depend on the number of reported cases in the

source city. Values of ϕ between 0 and 1 lead to infectiousness profiles that vary according to

weekly case counts. Parameter ε characterizes the density dependence of the connection

between a susceptible city and all invaded cities. When ε = 0, the formulation above reduces to

a simple density-dependent model, and when ε = 1, the formulation above reduces to a den-

sity-independent model. When ε is estimated, the model is equivalent to Fotheringham’s com-

peting destinations model [19]. The total force of infection on city j at time t is defined by:

lj;t ¼
Xi

i6¼j

li!j;tIij;t

where Iij;t ¼
1; if i ¼ Infectious and j ¼ Susceptible

0; otherwise

(

The probability that a susceptible city j is invaded at time tj is

PðtjÞ ¼ exp �
Xtj � 1

t¼0

lj;t

0

@

1

A 1 � exp
�
� lj;tj

�� �

The first part of the equation is the probability that a city escaped invasion from t = 0 until

just before tj. The second part is the probability that the city was invaded at tj given that it was

susceptible until that week. The conditional log likelihood is summed over all susceptible cit-

ies:

l ¼
X

j

ln ðPðtjÞÞ

We first investigated null models that only included β. Parameters were then added to test

for a spatial effect in transmission, the role of population size of invaded and susceptible cities,

and infectivity. Except for β, which is always estimated by Markov chain Monte Carlo

(MCMC), parameters can be fixed at 0, at 1 (not γ), or estimated by MCMC.

Stouffer’s rank model. According to Stouffer’s rank model, also known as the law of

intervening opportunities, the number of people traveling a particular distance is proportional
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to the number of opportunities at that distance and inversely proportional to the number of

opportunities along the way [42]. Following [22], we used population size as a proxy for

“opportunities.” Using our notation, the force of infection from city i to city j at time t is

li!j;t ¼ bc
�

i;tP
m

j
PiP

k2Oðj;iÞPk

 !u

where k 2 O(i,j) is the group of cities that are closer to susceptible city j than invaded city i: O
(j,i) = {k: 0<d(j,k)�d(j,i)}. We also considered a variant of this model in which city j is

included among the intervening opportunities. In “Stouffer’s rank variant model,” O(j,i) = {k:

0�d(j,k)�d(j,i)} which allows within-city opportunities to decrease spatial coupling.

Radiation model. We also considered the radiation model which was proposed by Simini

et al. [43]. This model also accounts for higher-order interactions among population centers

and is related to Stouffer’s rank model. Our version of the radiation model is

li!j;t ¼ bc
�

i;tPi

PiPj

ðPi þ
P

k2Oði;jÞPkÞðPj þ Pi þ
P

k2Oði;jÞPkÞ

where again we considered two variants, one in which city j is excluded (“radiation”) from the

set O(j,i) and one in which it is included (“radiation variant”). The radiation models do not

have a parameter for the spatial component.

Model estimation and computing

Metropolis-Hastings MCMC sampling was used to investigate the posterior distributions of

parameters [44,45]. Because the parameters cannot take negative values, we sampled from a

log normal distribution and corrected the Metropolis accept-reject rule for asymmetric jump-

ing. Parameters were updated one at a time. Uniform prior distributions were used for all

parameters. Three chains were run for each model with different starting values, and chains

were visually checked for convergence after 100,000 iterations with a burn-in of 0.2 times the

length of the chains (iterations times number of parameters). We also used the coda package

(version 0.19–4) in R to calculate the Gelman-Rubin statistic for each best-fitting model. This

statistic assesses model convergence by comparing the variance between- versus within-

MCMC chains. Lack of convergence is indicated by values above one [46,47] (S1 Text).

Median parameter estimates and 95% credible intervals were calculated from the posterior dis-

tributions after excluding the burn-in.

DIC was used to compare models. Lower values of DIC are preferred, and a difference of

about 5 is considered meaningful [48]. DIC was calculated using the medians of the posterior

distributions of the parameters due to non-normality of the likelihood.

All analyses were performed in R version 3.5.1. Data and code for reproducing the best-fit-

ting gravity model results and the figures in the main text as well as the weekly time series of

reported chikungunya fever and ZIKV disease cases at the city level are available on GitHub

(http://github.com/kcharniga/zika_chik_invasion).

Validation of gravity model fit and sensitivity analyses

The probability distribution of the invasion week was calculated for each city based on the

observed start of invasion in other cities up to that time. For each virus, this calculation was

performed using the median parameter estimates from the posterior distribution. The proba-

bility distributions were then compared with the observed invasion weeks.
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We also simulated the CHIKV and ZIKV epidemics in Colombia using 1,000 parameter

sets sampled from the posterior distribution. For each set, the city (or cities) invaded in the

first time step served as the origin of the epidemic. A random deviate was chosen from a uni-

form distribution between 0 and 1 for each city in each week. If the probability of tj was higher

than the random deviate, the city became invaded. Once invaded, the observed weekly case

counts weighted by the generation time distribution were used to model that city’s infectious-

ness over time. Epidemic simulations were also used to test the sensitivity of the case count

thresholds used to determine the number of invaded cities for each virus. Epidemic simula-

tions were also performed for the best-fitting Stouffer’s rank models (S1 Text).

Validation of parameter fitting procedure

Using the framework above, we validated the fitting procedure for the model parameters by

simulating one dataset for each virus with the median parameter estimates obtained from the

best-fitting models. The analysis was re-run on each simulated dataset to check that the fitted

parameter estimates could be recovered.

Risk factors of invasion

Logistic regression models were used to determine risk factors for invasion by CHIKV and

ZIKV. The outcome was defined as a city reporting at least 20 cases of chikungunya fever and

at least 30 cases of ZIKV disease for each respective model. Predictors included population

size, elevation, dengue risk, temperature, rainfall, and mean travel time as well as the percent-

age of households in each city with overcrowding, inadequate exterior walls, and inadequate

flooring. Dengue risk was categorized into four levels as follows: cities located at or below 1800

m of elevation that reported any cases of dengue fever between 2010–2016 were considered “at

risk” of dengue. The natural logarithm of the cumulative number of cases over this period was

taken and divided into tertiles (1–3 with 3 being the highest). All other cities were assigned val-

ues of 0. Mean temperature for each city was obtained by taking the mean of the weekly popu-

lation-weighted weekly time series of mean temperature over the study period, defined as the

time during which cases were being reported in the country (110 weeks for CHIKV and 97

weeks for ZIKV). Similarly, mean rainfall was calculated for each city as the mean of the popu-

lation-weighted weekly time series of cumulative precipitation for each respective study

period. As a sensitivity analysis, we also considered the mean of the weather covariates from

the week cases were first reported until the peak of each epidemic (34 weeks for CHIKV and

26 weeks for ZIKV). Mean travel time for each city was defined as the average time to travel

from that city to all other cities, excluding the islands of San Andrés and Providencia. Further

details about the data can be found in S1 Text.

The predictors were first explored in a univariate analysis (S1 Text). Significance of differ-

ence between invaded and uninvaded cities was tested by chi-square tests for categorical vari-

ables and Wilcoxon rank-sum test for continuous variables, none of which were normally

distributed. P values< 0.05 were considered statistically significant. A forward stepwise

approach was then used to build each logistic regression model: predictors were added to the

model one at a time and only kept if they were significant at the 0.05 level. The units of rainfall

and elevation were changed to 10 mm and 100 m, respectively, to improve the interpretation

of the odds ratios which were computed by exponentiating model coefficients. Models testing

the effect of mean travel time were fitted to 1,120 cities for which data were non-missing. The

Hosmer and Lemeshow goodness-of-fit test was applied to the best-fitting models using 10

groups.

PLOS COMPUTATIONAL BIOLOGY Spatial and temporal invasion dynamics of Zika and chikungunya epidemics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009174 July 2, 2021 19 / 25

https://doi.org/10.1371/journal.pcbi.1009174


Linear regression was also performed to assess the relationship between dengue risk and

time of invasion for CHIKV and ZIKV.

Supporting information

S1 Text. Fig A. Weekly reported cases of chikungunya fever (CF), dengue fever (DF), and

Zika virus disease (ZVD) in Colombia, January 2010 –June 2017. Fig B. Epidemiological

curves of chikungunya fever (CF) and Zika virus disease (ZVD) in Colombia by depart-

ment, 2014–2017. Departments are ordered from North to South down the columns. Y axes

are different for each plot. Fig C. City elevation. Comparison of elevation (in meters) between

cities that were invaded versus cities that escaped invasion for (a) CHIKV, (b) ZIKV, and (c)

CHIKV, ZIKV, or DENV. Fig D. Example of algorithm used to estimate invasion week

using the generation time method. (a) The time series for Caucasia in the department of

Antioquia during the 2015–2017 ZIKV epidemic. In this figure, week 1 corresponds to the

week ending on August 15, 2015, and week 51 corresponds to the week ending on July 30,

2016. The algorithm identifies the point of maximum incidence in the time series and counts

backward one week at a time until there are no reported cases. If there are no cases in this

week or the prior two or three weeks depending on the infection’s generation time, then this is

the invasion week. If not, the algorithm continues to go back in time until the condition is

met. The part of the line in red is the period used to determine the onset of invasion, and the

blue dashed line is the estimated invasion week. (b) The same time series as in (a) is shown

until the point of maximum incidence (week ending on January 23, 2016). The estimated time

of invasion is week 15 rather than week 21 because cases were reported in weeks 16–20. Fig E.

Comparison of estimated invasion weeks using two methods. A method based on the first

reported cases in each city (x-axis) and a method based on the generation time distribution of

each infection (generation time method, y-axis) were compared for (a) CHIKV and (b) ZIKV.

The black line is y = x. The two methods show good agreement (CHIKV: r = 0.60, ZIKV:

r = 0.68). Fig F. Comparison of estimated invasion weeks using two methods. A method

based on the generation time distribution (generation time method, x-axis) and a piecewise

spline method (Charu method, as in [21], y-axis) were compared for (a) CHIKV and (b)

ZIKV. 95% confidence intervals are shown for the Charu method only. For some cities, only

the point estimate for tj fell within the 95% confidence interval; this is shown by a lack of verti-

cal bar. The two methods show very good agreement (CHIKV: r = 0.90, ZIKV: r = 0.70). Fig

G. Distribution of invasion week by dengue risk level for (a) CHIKV and (b) ZIKV. The

black lines are the fitted linear regression models. Fig H. MCMC chains for the best-fitting

CHIKV gravity model from three different starting points. Fig I. MCMC chains for the

best-fitting ZIKV gravity model from three different starting points. Fig J. Epidemic simu-

lations of the best-fitting gravity models showing the sensitivity of the thresholds used to

determine invasion. Fig K. Comparison of the distance kernel obtained when running the

CHIKV gravity model from week 12 versus the entire dataset. The distance power estimates

were similar when parameter estimation started from week 12 (1.77 [95% CrI: 1.54–1.99])

compared to week 1 (1.68 [95% CrI: 1.44–1.90]). Fig L. Probability distribution of estimated

invasion week (generation time method). Colored lines represent the probability distribution

of invasion week for (a) CHIKV and (b) ZIKV. The calculations were performed using the

median parameter estimates from the posterior distributions of the models using estimated

invasion week rather than first reported cases. The black lines show the estimated invasion

week in each city using a method based on each infection’s generation time. Values of 0.01 rep-

resent probabilities of 0.01 or less. Fig M. Epidemic invasion simulations (generation time

method). Simulated invasion for (a) CHIKV and (b) ZIKV from the models using estimated
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invasion week by generation time method rather than week of first reported cases. Simulated

epidemics are shown in light gray. The dark gray lines are the average across the 1,000 simula-

tions. The red lines are the observed incidence curves. Fig N. Epidemic invasion simulations

(all cities). Simulated invasion for (a) CHIKV and (b) ZIKV from the models using week of

first reported cases and all 1,122 cities in Colombia. Simulated epidemics are shown in light

gray. The dark gray lines are the average across the 1,000 simulations. The red lines are the

observed incidence curves. Fig O. Epidemic invasion simulations (best-fitting Stouffer’s

rank models). Results correspond to the models presented Tables S-T. Simulated invasion for

(a) CHIKV and (b) ZIKV from the models using week of first reported cases. Simulated epi-

demics are shown in light gray. The dark gray lines are the average across the 1,000 simula-

tions. The red lines are the observed incidence curves. Fig P. Long-distance transmission

events. The distribution of d-D for (a) CHIKV and (b) ZIKV in this study. The dashed blue

lines are plotted at the 97.5th percentile (corresponding to 212.00 km and 255.33 km for

CHIKV and ZIKV, respectively) and the dashed red lines are plotted at the 99th percentile

(corresponding to 344.40 km and 321.21 km for CHIKV and ZIKV, respectively). Long-dis-

tance transmission events were defined as invasions that occurred in cities included in the 99th

percentile of this distribution. Fig Q. Probability distribution of first reported cases by

department for CHIKV. Black circles are cities that fall within the 95% interval of their

expected distribution, and red circles fall outside this interval. The gray circle in the depart-

ment of Córdoba represents the city that was invaded in week 0. Fig R. Probability distribu-

tion of first reported cases by department for ZIKV. Black circles are cities that fall within

the 95% interval of their expected distribution, and red circles fall outside this interval. The

gray circles in the departments of San Andrés, Valle del Cauca, and Norte de Santander repre-

sent cities that were invaded in week 0. Fig S. Parameter estimates for CHIKV model fitted

using estimated invasion week by generation time method. The dashed red line shows the

median of the posterior distribution of each parameter after removing the burn-in period. The

blue line shows the median of the posterior distribution from the model fitted using the

method based on first reported cases as in the main text. Only parameters that are estimated in

both models are shown. Fig T. Parameter estimates for ZIKV model fitted using estimated

invasion week by generation time method. The dashed red line shows the median of the pos-

terior distribution of each parameter after removing the burn-in period. The blue line shows

the median of the posterior distribution from the model fitted using the method based on first

reported cases as in the main text. Only parameters that are estimated in both models are

shown. Table A. Gelman-Rubin statistic for each of the best-fitting gravity models (after

removing the burn-in). Table B. Acceptance percentages for parameters of the best-fitting

CHIKV and ZIKV gravity models. Table C. Summary statistics of the d-D distributions.

This table shows that ZIKV and CHIKV exhibited similar patterns of transmission. The first

six columns have units in km. The seventh column is the total sample size, and the last two col-

umns contain the number of long-distance transmission events for two distance thresholds.

Table D. Recipient and potential source cities of long-distance transmission events of

CHIKV. Table E. Recipient and potential source cities of long-distance transmission

events of ZIKV. Table F. Estimates of the mean and standard deviation of the generation

time distribution. Estimates were used to calculate city infectivity. All values have units in

days. Table G. Univariate analysis of risk factors of CHIKV invasion. Table H. Univariate

analysis of risk factors of ZIKV invasion. Table I. Best-fitting logistic regression model of

CHIKV invasion. Models were fitted to 1,120 cities because mean travel time between cities

was not available for two island cities. Table J. Best-fitting logistic regression model of ZIKV

invasion. Models were fitted to all 1,122 cities in Colombia. Table K. Comparison of parame-

ter estimates from gravity models fitted to different numbers of cities using thresholds of
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10, 20, and 30 cumulative reported cases. In each case, the model is the infectivity model

with μ set to 0. Columns in bold correspond to results presented in the main text. Table L.

Comparison of parameter estimates from observed data versus simulated data. Table M.

Parameter estimates for six gravity models of CHIKV for 337 cities using geographic dis-

tance. Posterior median and 95% credible interval presented for each parameter. Bold indi-

cates the best-fitting model. Travel time data were only available for 337 out of 338 cities. To

compare across distance metrics, 337 cities were also used for geographic distance models.

Table N. Parameter estimates for six gravity models of CHIKV for 337 cities using travel

time between cities. Posterior median and 95% credible interval presented for each parameter.

Bold indicates the best-fitting model. Travel time data were only available for 337 out of 338

cities. Table O. Parameter estimates for six gravity models of ZIKV for 287 cities using geo-

graphic distance. Posterior median and 95% credible interval presented for each parameter.

Bold indicates the best-fitting model. Travel time data were only available for 287 out of 288

cities. To compare across distance metrics, 287 cities were also used for geographic distance

models. Table P. Parameter estimates for six gravity models of ZIKV for 287 cities using

travel time between cities. Posterior median and 95% credible interval presented for each

parameter. Bold indicates the best-fitting model. Travel time data were only available for 287

out of 288 cities. Table Q. Comparison of alternative models of CHIKV and ZIKV spread

in Colombia. Posterior median and 95% credible interval presented for each parameter. Mod-

els are ordered by sum of DIC and were fitted separately to 337 cities for CHIKV and 287 cities

for ZIKV. Table R. Comparison of individual versus joint models of CHIKV and ZIKV

spread in Colombia (third and fourth best-fitting model variants). Posterior median and

95% credible interval presented for each parameter. Models were fitted to 337 cities for

CHIKV and 287 cities for ZIKV. For the joint models that estimate different parameters across

arboviruses, parameters with subscript a refer to CHIKV, while parameters with subscript b

refer to ZIKV. Table S. Parameter estimates for seven models of CHIKV in Colombia for

338 cities. The first six models are variations of the gravity model. Posterior median and 95%

credible interval presented for each parameter. Bold indicates the model used in the valida-

tions. Table T. Parameter estimates for seven models of ZIKV in Colombia for 288 cities.

The first six models are variations of the gravity model. Posterior median and 95% credible

interval presented for each parameter. Bold indicates the model used in the validations.

(DOCX)

S1 Movie. Monthly chikungunya fever incidence per 100,000 population by department on

a hexagonal grid.

(MOV)

S2 Movie. Monthly ZIKV disease incidence per 100,000 population by department on a

hexagonal grid. For both movies, the following abbreviations were used for department

names: AMA = Amazonas, ANQ = Antioquia, ARA = Arauca, ANT = Atlántico,

BOL = Bolı́var, BOY = Boyacá, CAL = Caldas, CAQ = Caquetá, CAS = Casanare,

CAU = Cauca, CES = Cesar, CHO = Chocó, COR = Córdoba, CUN = Cundinamarca,

GUA = Guainı́a, GUV = Guaviare, HUI = Huila, LAG = La Guajira, MAG = Magdalena,

MET = Meta, NAR = Nariño, NDS = Norte de Santander, PUT = Putumayo, QUI = Quindı́o,

RIS = Risaralda, SAA = San Andrés and Providencia, SAN = Santander, SUC = Sucre,

TOL = Tolima, VDC = Valle del Cauca, VAU = Vaupés, VIC = Vichada. Note that the island

department of San Andrés and Providencia is attached to the mainland on the left side of the

map.

(MOV)

PLOS COMPUTATIONAL BIOLOGY Spatial and temporal invasion dynamics of Zika and chikungunya epidemics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009174 July 2, 2021 22 / 25

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009174.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009174.s003
https://doi.org/10.1371/journal.pcbi.1009174


Acknowledgments

The authors would like to thank all of the medical and public health professionals involved in

the reporting of chikungunya fever and ZIKV disease cases to Sivigila, Colombia’s national

public health surveillance system.

Author Contributions

Conceptualization: Pierre Nouvellet, Christl A. Donnelly.
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Methodology: Pierre Nouvellet, Christl A. Donnelly.

Software: Kelly Charniga, Zulma M. Cucunubá, Pierre Nouvellet.
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30. Martı́nez Duran M, Dı́az J, Gómez N, López B, Rodrı́guez A, Montana C, et al. Estimación del subregis-

tro de casos de enfermedad por el virus de chikunguña en el municipio de El Espinal, Tolima, octubre
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Zika in Latin America. Science. 2016; 353(6297):353–4. https://doi.org/10.1126/science.aag0219

PMID: 27417493

42. Stouffer S. Intervening Opportunities: A Theory Relating Mobility and Distance. American Sociological

Review. 1940; 5(6):845–67.
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